
Uninitialized Variables

An uninitialized variable is a variable that is declared but is not set to a definite known value before it is used. It will

have some value, but not a predictable one.

A common assumption made is that all variables are set to a known value, such as zero, when they are declared. While

this is true for many languages, it is not true for all of them, and so the potential for error is there.

C++ is one of the languages that will have an unpredictable value for uninitialized variables.

Java, for example, will have predictable values. Java does not have uninitialized variables.

For example: If you look at HW 4 Q3 we went over yesterday in lab

--- I just printed the first three uninitialized variables, (num, pos, neg).

num printed out zero

pos printed out a “garbage” value, 4196432

neg printed out zero

This shows us uninitialized variables have unpredictable values.

So when do you have to initialize variables???

When you read from a variable before you write to it

Though, many sources recommend initializing every variable you declare, except if you are assigning it a value in the next

couple of lines.

Ex:

int number;

cout << “Enter a number: ”;

cin >> number;

Extra:

If you use a shortcut such as (++), remember you are reading before you are writing and you can end up with an unknown

value if the variable is not initialized.

If you recall yesterday we were getting a weird value after we incremented the variable pos.

This is because,

pos++;

is equivalent to

pos = pos + 1;

We are first reading the value from pos, then adding 1 to that value, and finally assigning that new value back to pos.

